|
|
|
| |
Footnote #1 |
|
Ghosh P., Ishihama A., and Chatterji D. 2001. Escherichia coli RNA polymerase subunit omega and its N-terminal domain bind full-length beta' to facilitate incorporation into the alpha2beta subassembly. Eur. J. Biochem. 268: 4621–4627. |
|
Mukherjee K. and Chatterji D. 1997. Studies on the omega subunit of Escherichia coli RNA polymerase — Its role in the recovery of denatured enzyme activity. Eur. J. Biochem. 247: 884–889. |
|
Kanemori M., Yanagi H., and Yura T. 1999. Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation. J. Biol. Chem. 274: 22002–22007. |
|
Stragier P. and Losick R. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30: 297–241. |
Footnote #2 |
|
Luscombe N.M., Austin S.E., Berman H.M., and Thornton J.M. 2000. An overview of the structures of protein-DNA complexes. Genome Biol. 1: REVIEWS001. |
|
Raumann B.E., Rould M.A., Pabo C.O., and Sauer R.T. 1994. DNA recognition by beta-sheets in the Arc repressor-operator crystal structure. Nature 367: 754–757. |
Footnote #3 |
|
Bell C.E. and Lewis M. 2000. A closer view of the conformation of the Lac repressor bound to operator. Nat. Struct. Biol. 7: 209–214. |
|
Passner J.M., Schultz S.C., and Steitz T.A. 2000. Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 Å resolution. J. Mol. Biol. 304: 847–859. |
Footnote #6 |
|
Bell A., Gaston K., Williams R., Chapman K., Kolb A., Buc H., Minchin S., Williams J., and Busby S. 1990. Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription. Nucleic Acids Res. 18: 7243–7250. |
|
Niu W., Kim Y., Tau G., Heyduk T., and Ebright R.H. 1996. Transcription activation at class II CAP-dependent promoters: Two interactions between CAP and RNA polymerase. Cell 87: 1123–1134. |
|
Williams R., Bell A., Sims G., and Busby S. 1991. The role of two surface exposed loops in transcription activation by the Escherichia coli CRP and FNR proteins. Nucleic Acids Res. 19: 6705–6712. |
|
West D., Williams R., Rhodius V., Bell A., Sharma N., Zou C., Fujita N., Ishihama A., and Busby S. 1993. Interactions between the Escherichia coli cyclic AMP receptor protein and RNA polymerase at class II promoters. Mol. Microbiol. 10: 789–797. |
|
Zhou Y., Zhang X., and Ebright R.H. 1993. Identification of the activating region of catabolite gene activator protein (CAP): Isolation and characterization of mutants of CAP specifically defective in transcription activation. Proc. Natl. Acad. Sci. 90: 6081–6085. |
Footnote #7 |
|
Monsalve M., Mencia M., Rojo F., and Salas M. 1996. Activation and repression of transcription at two different phage phi29 promoters are mediated by interaction of the same residues of regulatory protein p4 with RNA polymerase. EMBO J. 15: 383–391. |
|
Ryu S., Fujita N., Ishihama A., and Adhya S. 1998. GalR-mediated repression and activation of hybrid lacUV5 promoter: Differential contacts with RNA polymerase. Gene 223: 235–245. |
Footnote #8 |
|
Kumar A., Grimes B., Fujita N., Makino K., Malloch R.A., Hayward R.S., and Ishihama A. 1994. Role of the sigma 70 subunit of Escherichia coli RNA polymerase in transcription activation. J. Mol. Biol. 235: 405–413. |
Footnote #9 |
|
Schlax P.J., Capp M.W., and Record M.T., Jr. 1995. Inhibition of transcription initiation by lac repressor. J. Mol. Biol. 245: 331–350. |
Footnote #10 |
|
See A Genetic Switch and references therein. |
Footnote #11 |
|
Luo Y., Pfuetzner R.A., Mosimann S., Paetzel M., Frey E.A., Cherney M., Kim B., Little J.W., and Strynadka N.C. 2001. Crystal structure of LexA: A conformational switch for regulation of self-cleavage. Cell 106: 585–594. |
Footnotes #12–14 |
|
See A Genetic Switch and references therein. |
Footnote #15 |
|
Dodd I.B., Perkins A.J., Tsemitsidis D., and Egan J.B. 2001. Octamerization of lambda CI repressor is needed for effective repression of P(RM) and efficient switching from lysogeny. Genes Dev. 15: 3013–3022. |
Footnote #16 |
|
Joung J.K., Koepp D.M., and Hochschild A. 1994. Synergistic activation of transcription by bacteriophage lambda cI protein and E. coli cAMP receptor protein. Science 265: 1863–1866. |
|
Li M., McClure W.R., and Susskind M.M. 1997. Changing the mechanism of transcriptional activation by phage lambda repressor. Proc. Natl. Acad. Sci. 94: 3691–3696. |
|
Dove S.L., Joung J.K., and Hochschild A. 1997. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature 386: 627–630. |
Footnote #18 |
|
Ninfa A.J., Reitzer L.J., and Magasanik B. 1987. Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers. Cell 50: 1039–1046. |
|
Popham D.L., Szeto D., Keener J., and Kustu S. 1989. Function of a bacterial activator protein that binds to transcriptional enhancers. Science 243: 629–635. |
|
Buck M. and Cannon W. 1992. Activator-independent formation of a closed complex between sigma 54-holoenzyme and nifH and nifU promoters of Klebsiella pneumoniae. Mol. Microbiol. 6: 1625–1630. |
Footnote #19 |
|
Molina-Lopez J.A. and Santero E. 1999. An artificial enhancer with multiple response elements stimulates prokaryotic transcriptional activation medicated by various regulatory proteins. Mol. Gen. Genet. 262: 291–301.
|
© 2002 by Cold Spring Harbor Laboratory Press. All rights reserved. |
|
No part of these pages, either text or image, may be used for any purpose other than personal use. Therefore, reproduction, modification, storage in a retrieval system, or retransmission, in any form or by any means, electronic, mechanical, or otherwise, for reasons other than personal use, is strictly prohibited without prior written permission. |
|
|